
It is demonstrated that the forward rates process discretized by a single time
step together with a separability assumption on the volatility function allows
for representation by a low-dimensional Markov process. This in turn leads to
efficient pricing by, for example, finite differences. We then develop a discret-
ization based on the Brownian bridge that is especially designed to have high
accuracy for single time stepping. The scheme is proven to converge weakly
with order one. We compare the single time step method for pricing on a grid
with multi-step Monte Carlo simulation for a Bermudan swaption, reporting
a computational speed increase by a factor 10, yet maintaining sufficiently
accurate pricing.

1 Introduction

The BGM framework, developed by Brace, Ga̧tarek and Musiela (1997),
Miltersen, Sandmann and Sondermann (1997) and Jamshidian (1996, 1997), is
now one of the most popular models for pricing interest rate derivatives. In the
BGM framework almost all prices are computed using Monte Carlo simulation.
An advantage of Monte Carlo is its applicability to almost any product. However,
it has the drawback of being computationally rather slow. In an attempt to limit
the computational time, Hunter, Jäckel and Joshi (2001a,b), Jäckel (2002, Section
12.5) and Kurbanmuradov, Sabelfeld and Schoenmakers (1999, 2002) introduced
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predictor-corrector drift approximations, which reduce the Monte Carlo stage to
single time-step simulation.

This paper presents a significant addition to the single time step pricing
method. We show that much more efficient numerical methods (either numerical
integration or finite differences) may be used at the cost of a minor additional
assumption, separability. The latter is a non-restrictive requirement on the form
of the volatility function. The single time step together with separability renders
the state of the BGM model completely determined by a low-dimensional Markov
process. This enables efficient implementation.

We give an example of the fast single time step pricing framework for Bermudan
swaptions. A comparison is made with prices obtained by least-squares multi-
time step Monte Carlo simulation in the BGM model. This includes the use of the
Longstaff and Schwartz (2001) method.

The computational speed increase achieved with the use of finite differences
for BGM single time step pricing is the main result. This paper also contains two
other results:

❏ The first result is a new time discretization using a Brownian bridge, as intro-
duced in Section 3, which is proven to have least-squares error in a certain sense
(to be defined) for single time step discretizations. In Section 4 it is shown
numerically that the Brownian bridge scheme outperforms (in the case of
single time steps) various other discretizations for the Libor-in-arrears density
test. In the first part of Section 5, we prove theoretically that the Brownian
bridge scheme converges weakly with order one when used for multi-time step
Monte Carlo. In the second part of Section 5, we compare the Brownian bridge
scheme numerically with other discretizations for multi-time steps.

❏ The second result is a method for measuring the accuracy of single time
stepping. This is the timing inconsistency test as outlined in Section 8.

A further application of the Brownian bridge drift approximation is its use in
the likelihood ratio method. This method, introduced by Broadie and Glasserman
(1996), efficiently estimates risk sensitivities for Monte Carlo pricing. The
particular application of the likelihood ratio method to the Libor market model
has been developed by Glasserman and Zhao (1999), who proposed the use of
drift approximations.

The outline of this paper is as follows. After setting out some basic notation
and the most important formulas for the BGM model, the single time step pricing
framework is developed, various discretization schemes are discussed and the
Brownian bridge scheme is introduced. The Brownian bridge scheme is then
investigated theoretically and numerically for both single and multi-time steps,
respectively. Next, the proposed framework is worked out for the one-factor case.
This is followed by an example of the pricing of Bermudan swaptions, both for a
one- and a two-factor model. A test is then developed to assess the quality of
single time steps. Finally, conclusions are drawn.
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2 Notation for BGM model

In this section our notation of the BGM model is introduced.
Consider a BGM model, M.1 Such a model features N forward rates, Li,

i = 1,…, N, where forward i accrues from time Ti to time Ti+1, 0 < T1 < … < TN+1.
Define the accrual factor, δi, to be Ti+1 – Ti. Denote by Bi(t) the time-t price of a
discount bond that expires at time Ti. Bond prices and forward rates are linked by
the relation

Each forward rate is driven by a d-dimensional Brownian motion (where d is the
number of stochastic factors in the BGM model), W, as follows:

µ̃i(t)dt + σi(t) · dW(t) (1)

Here σi is the d-dimensional volatility vector, and µ~ i is the drift term, whose form
will in general depend on the choice of probability measure. Throughout, we use
the numeraire probability measure associated with the bond maturing at time
TN+1, the so called terminal measure. There is a specific reason why we use the
terminal measure, and this is explained in Remark 2 of Section 3. For the termi-
nal measure, the drift term will have the following form for i < N:

µ̃i (t , Li +1,…, LN) (2)

For i = N the drift term is zero. This simply expresses the well-known fact that a
forward rate is a martingale under its associated forward measure.

For the remainder of this paper it will be useful to have stochastic differential
equation (SDE) (1) in logarithmic form:

d log Li(t) = µi(t)dt + σi(t) · dWN+1(t),

µi(t) = µ~ i(t) – 
1
–
2

σi(t)
2

(3)

Last, we introduce the notion of all available forward rates at a given point in
time. Define i(t) to be the smallest integer i such that t ≤ Ti. Define L to consist of
all forward rates that have not yet expired at time t, ie,

(4)L(t) = (Li(t)(t),…, LN (t))

δ σ σ

δ
k k k i

k kk i
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3 Single time step method for pricing on a grid

The two key elements in the development of a method to price interest rate
derivatives in the BGM model by low-dimensional finite differences are:

❏ the forward rates process should be discretized by a single time step scheme;
and

❏ the volatility structure should be separable, which permits the dynamics of the
single time step forward rates process to be represented by a low-dimensional
Markov process.

3.1 Justification of the above assumptions

Because the forward rates are approximated by a single-step scheme, the model
will in general no longer be arbitrage-free. This timing inconsistency is addressed
in Section 8, where it is shown that its impact is negligible for most cases.
The single-step approximation is accurate enough for the pricing of derivatives,
as shown numerically in Section 7. At the end of this section we introduce a
novel discretization scheme based on the Brownian bridge that is especially
designed for single time stepping. Its superiority (for single time steps only) over
other discretizations is established in Section 4.

We proceed by first introducing notation for the single step-approximated
forward rates process. This is followed by a statement of the separability assump-
tion, after which we establish the low-dimensional Markov representation result.
Single time step discretizations are then discussed, and we end by considering
methods for pricing American style options with Monte Carlo methods.

3.2 Notation

We assume as given a time discretization τ1 < … < τJ. Define Zi(u, v) = ∫u

v
σi(t) ·

dWN+1(t). Given a scheme for the log rates

(5)log Li(τj+1) = log Li(τj) + Di (τj, τj+1, L(τj), Z(τj, τj+1)) + Zi(τj, τj+1)

then denote by

Li
A(t) = Li(0) exp{Di(0, t, L(0), Z(0, t)) + Zi(0, t)}

its single time step-approximated equivalent. Here D stands for “drift approxi-
mation” and it is determined by the scheme applied, which may be the Euler,
the predictor-corrector or the Brownian bridge scheme. These schemes will be
elaborated on at the end of this section. The A in LA stands for “approximated”.
The vector Z is defined by analogy with L in Equation (4).

3.3 Separability

DEFINITION 1 (SEPARABILITY) A collection of instantaneous volatility functions
σi : [0, Ti] → �d, i = 1,…, N, is called “separable” if there exists a vector-valued
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function σ : [0, T ] → �d and vectors vi ∈�d, i = 1,…, N, such that

(6)σi(t) = vi σ(t)

(no vector product; entry-by-entry multiplication) for 0 ≤ t ≤ Ti, i = 1,…, N.

Separability appears regularly in the context of requiring a process to be Markov.
We mention three examples. First, we mention Ritchken and Sankarasubra-
manian (1995, Proposition 2.1). Working in the HJM model (Heath, Jarrow and
Morton, 1992), they show that separability is a necessary and sufficient condition
on the volatility structure such that the dynamics of the term structure may be
represented by a two-dimensional Markov process. Second, we mention the
Wiener chaos expansion framework of Hughston and Rafailidis (2002). In this
framework any interest rate model is completely characterized by its so-called
Wiener chaos expansion. The n th chaos expansion is represented by a function
φn : �+

n → � that satisfies certain integrability conditions. If all φn are separable,
the resulting interest rate model turns out to be Markov. Third, we mention the
finite-dimensional Markov realizations for stochastic volatility forward rate
models (see Björk, Landén and Svensson, 2002). Here a necessary condition for
a stochastic volatility model to have a finite-dimensional Markov realization is
that the drift term and each component of the volatility term in the Stratonovich
representation of the short rate SDE should be a sum of functions that are sepa-
rable in time to expiry and the stochastic volatility driver.

We give an example of a separable volatility function in the case of a one-
factor model (d = 1).

Example (mean-reversion) Following De Jong, Driessen and Pelsser (2002), the
instantaneous volatility may be specified as

(7)σi(t) = γi e–κ(Ti – t)

The constant κ is usually referred to as the mean-reversion parameter.

3.4 Single time step method

The following proposition shows that a single time step plus separability yields
low-dimensional representability.

PROPOSITION 1 Suppose that M is a d-factor BGM model, for which the instan-
taneous volatility structure is separable. Then the single time step discretized
forward rates process may be represented by a d-dimensional Markov process.

PROOF Define the Markov process X : [0, T ] → �d by

X W( ) ( ) ( )t s sN

t

= +∫ σ d 1

0
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(entry-by-entry multiplication) where σ is as in Definition 1. Then the single time
step process LA : [0, T ] → (0, ∞)n– i(t)+1 at time t satisfies

(8)Li
A(t) = Li(0) exp{Di(0, t, L(0), vX(t)) + vi · X(t)}

Here Di is defined implicitly by Equation (5) and v is a matrix of which row i is
vi. The claim follows, bar a clarifying remark:

The second term in the exponent of Equation (8) is exactly equal to the sto-
chastic part occurring in the BGM SDE (1), in virtue of the separability of the
volatility structure:

where the notation of Definition 1 has been used. ��

REMARK 1 The vector of single time-stepped rates may be considered (if separa-
bility holds) to be a time-dependent function of the Markov process X, ie,

LA(t) = f (t, X(t))

for some function f. Hunt, Kennedy and Pelsser (2000, Theorem 1) showed that
this is impossible to achieve for the true BGM forward rates themselves in the
case when X is one-dimensional and under some technical restrictions.

Another essential building block for the fast single time step pricing framework is
use of the terminal measure. This is explained in the following remark.

REMARK 2 (Choice of numeraire) For the workings of the fast single time step
pricing algorithm it is essential that the terminal measure be used. This is
explained as follows. As proven in Proposition 1, the time-t single time-stepped
forward rates are fully determined by X(t). This result holds for any choice of
measure or numeraire. However, for the terminal numeraire, the value of the
numeraire at time t is fully determined by the forward rate values at time t, but
this does not hold in the case of, for example, the spot numeraire, in that the
latter is generally determined by bond values observed at earlier times. The spot
numeraire B0 rolls its holdings over by the spot Libor account. Its time-Ti value is

Put in another way, the value of the spot numeraire is path-dependent, whereas

B T
B T

Ti

j jj

i0

11
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that of the terminal numeraire is not. For pricing on a grid it is essential that the
numeraire value is known given the value of X(t). Therefore the fast single time
step framework requires the use of the terminal numeraire.

3.5 Valuation of interest rate derivatives with the single time step method

Interest rate derivatives with mild path-dependency may be valued by numerical
integration, by a lattice/tree or by finite differences, provided that the single time-
stepped rates are used and the separability assumption holds. The derivatives that
may be valued include, but are not restricted to: caps, floors, European and
Bermudan swaptions, trigger swaps and discrete barrier caps.

3.6 Discretizations

We discuss four time-discrete approximation schemes of the log BGM SDE (3):

❏ Euler;
❏ predictor-corrector;
❏ Milstein second-order scheme; and
❏ Brownian bridge.

The notation (Equation (5)) for a discretization of SDE (3) is recalled here:

log Li(τj+1) = log Li(τj) + Di(τj, τj+1, L(τj), Z(τj, τj+1)) + Zi(τj, τj+1)

We implicitly define D
~

by

Di (τj, τj+1, L(τj), Z(τj, τj+1)) = D
~

i(τj, τj+1, L(τj), Z(τj, τj+1))

so as to remove the term common to the Euler, predictor-corrector and Brownian
bridge discretizations.

3.6.1 Euler discretization
The Euler discretization (see, for example, Kloeden and Platen (1999, Equation
(9.3.1))) sets

D̃i (τj, τj+1, L(τj), Z(τj, τj+1)) =

3.6.2 Predictor-corrector discretization
The predictor-corrector discretization was introduced to the setting of Libor
market models by Hunter, Jäckel and Joshi (2001a). The key idea is to use pre-
dicted information to more accurately estimate the contribution of the drift to the
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increment of the log rate. For the terminal measure, an iterative procedure may be
applied that loops from the terminal forward rate, N, to the spot Libor rate, i(t).
Initially, we set D

~
N (τj, τj+1, L(τj), Z(τj, τj+1)) = 0. Then, for i = N – 1, …, i(t),

D̃i (τj , τj+1, L(τj), Z(τj , τj+1)) =

with Lk(τj+1) dependent on Lm(τj) and Zm(τj, τj+1), m = k + 1,…, N.

3.6.3 Milstein discretization
The second-order Milstein scheme (see, for example, Kloeden and Platen (1999,
Equation (14.2.1))) was introduced to the setting of Libor market models in the
series of papers by Glasserman and Merener (2003a,b and 2004). Moreover,
these papers extended the convergence results to the case of jump–diffusion with
thinning, which is key to the development of the jump–diffusion Libor market
model. Also, these papers considered discretizations in various different sets of
state variables, such as forward rates, log-forward rates, relative discount bond
prices and log-relative discount bond prices. In Glasserman and Merener (2003b,
2004) it is shown numerically that the time-discretization bias of the log-Euler
scheme is less than the bias of other discretizations, for example, in terms of the
bonds. The results of Glasserman and Merener thus justify the log-type discret-
ization (5) used in the present work.

The Milstein scheme can indeed be used to obtain a single time step discret-
ization of the forward rates process – and hence it may be applied to the single
time step pricing framework – but it is not particularly suited to single large time
steps, as shown in the numerical comparisons for single time step accuracy in
Section 4. Therefore we omit here the exact form of the scheme.

3.6.4 Brownian bridge discretization
Here we develop a novel discretization for the drift term. The idea is to calculate
the expectation of the drift integral given the (time-changed) Wiener increment.

D̃i (τj , τj+1, L(τj), Z(τj , τj+1)) =

(9)

The Brownian bridge discretization is superior when a single time step is applied.
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This is shown theoretically and numerically in Section 4. Viewed as a numerical
scheme for multi-step discretizations, it converges weakly with order one, as will
be shown in the first part of Section 5. In the multi-step Monte Carlo numerical
experiments of the second part of Section 5, we show that the bias is significantly
less than for the Euler discretization.

In the remainder of this section, we first show how expression (9) can be cal-
culated in practice, and, second, we establish that the Brownian bridge scheme
has least-squares error (in a yet to be defined sense).

REMARK 3 (CALCULATION OF EXPRESSION (9)) In practice, expression (9) can be
approximated with high accuracy. The calculation proceeds in four steps (it is
indicated when a step contains an approximation):

Step 1 To calculate expression (9), the first step is to note that the order of the
expectation and integral may be interchanged.

This is a straightforward application of Fubini’s theorem (see, for example,
Williams (1991, Section 8.2)).
Step 2 (approximation) For the purposes of calculating the conditional
expected value of expressions of the form L ⁄ (1 + δL), the forward rates are
approximated with a single-step Euler discretization. Note that once this
assumption has been made, the drift no longer affects the calculation. This
stems from a property of the Brownian bridge: a Wiener process with deter-
ministic drift conditioned to pass through a given point at some future time is
always a Brownian bridge, independently of its drift prior to conditioning.
Thus the estimation of the drift integral (9) is the same whether it is assumed
that the forward rates are driftless or whether these follow a single time step
Euler approximation.
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where BB indicates the use of the Brownian bridge, and where we have
suppressed the dependence of time s.

Note that the assumption of singe-step Euler discretization for the calcula-
tion of expression (9) renders this calculation an approximation. In principle,
the approximation could affect the quality of the discretization. We show
numerically that this is not the case in the Libor-in-arrears case considered in
Section 4.
Step 3 The conditional mean and conditional variance of the log forward rates
are calculated. See Appendix A for details.
Step 4 (approximation) The drift expression (9) may be approximated by a
single numerical integration over time; the expectation term is approximated
by inserting the conditional mean of the forward rates process:2

REMARK 4 If a two-point trapezoidal rule (ie, the average of the begin and end
points) is used to evaluate the time integral in expression (9), the Brownian bridge
reduces to the predictor-corrector scheme. In this sense, the predictor-corrector
scheme is a special case of the Brownian bridge scheme.

We end this section with a discussion of the method used in this paper for pricing
American-style options with Monte Carlo. The method used is the regression-
based method of Longstaff and Schwartz (2001), which is a method of stochastic
mesh type (see Broadie and Glasserman (2004)). Convergence of the method to
the correct price follows generically from the asymptotic convergence property of
stochastic mesh methods, as shown by Avramidis and Matzinger (2004).

4 The Brownian bridge scheme for single time steps

In this section, we establish theoretically and numerically that the Brownian bridge
scheme has superior accuracy for single time steps.
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4.1 Theoretical result

Consider a stochastic differential equation of the form

(10)dX(t) = µ(t, X(t))dt + σ(t) dW(t)

Note that the BGM log SDE (3) is of the above form. We consider a certain class
of discretizations:

DEFINITION 2 Let the function µ̄( · , · , · ) denote a single time step discretization of
SDE (10) with the following form:

(11)Y(τj+1) = Y(τj) + µ̄(τj, Y(τj), Z(τj, τj+1)) + Z(τj, τj+1)

Here Z(τj, τj+1) = ∫τi

τi+1

σ(s)dW(s). Any such discretization is said to use informa-
tion about the Gaussian increment to estimate the drift term.

Note that Euler, predictor-corrector and Brownian bridge are such schemes. The
next theorem states that, for the BGM setting, the Brownian bridge scheme (9)
has least-squares error for a single time step over all discretizations that use
information about the Gaussian increment for the drift term.

LEMMA 1 Let {Y} be a single time step discretization of SDE (10) that uses infor-
mation about the Gaussian increment for the drift term. Consider the discretization
expected squared error

Here X{t, x} denotes the solution of SDE (10) starting from (t, x). Then the discret-
ization {Y*} that yields least squared error, S2, over all possible discretizations
that use information about the Gaussian increment to estimate the drift term is
defined by

(12)

PROOF Define

For ease of exposition we write Z = Z(τj, τj+1) and µ̄ = µ̄(τj, Y(τj), Z), but we keep
in mind that µ̄ is {F(τj), Z}-measurable. Also write �t[ · ] := �[ ·F(t)]. Then let
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{Y ′} with drift term µ̄′ be a discretization of the form of Definition 2. First, we
condition on Z:

�τj[{µ̄′ – I}2Z ] ≥ �τj[{�τj
[ I Z ] – I}2 Z ]

= �τj[{µ̄* – I}2Z ]
The inequality holds since expectation equals projection, and the latter has, by
definition, least squared error over all possible {F(τj), Z}-measurable drift terms.
Continuing, we find

S2({Y ′}) = �τj[{µ̄′ – I}2] = �τj[�τj [{µ̄′ – I}2Z ]]
≥ �τj[�τj [{µ̄* – I}2Z ]] = S2({Y*})

ie, Y* has less squared error than Y ′. As Y ′ was an arbitrary discretization of the
form of Definition 2, the result follows. ��

4.2 Libor-in-arrears case

We estimate numerically the accuracy in the Libor-in-arrears test of the various
schemes of Section 3. We extend here the Libor-in-arrears test of Hunter, Jäckel
and Joshi (2001a) by including the Milstein and Brownian bridge schemes. The
test is designed to measure the accuracy of a single time step discretization.
The idea of the test is briefly described here; for details the reader is referred to
Hunter, Jäckel and Joshi (2001a).

Consider the distribution of a forward rate under the measure associated with
the numeraire of a discount bond maturing at the fixing time of the forward. Note
that the forward rate is not a martingale under such a measure as the natural pay-
ment time of the forward is not the same as its fixing time. An analytical formula
for the associated density, however, is known. We can thus compare the density
obtained from a single time step discretization with the analytical formula for
the density. The results of this test are displayed in Figure 1. It is shown (for the
particular set-up) that the Brownian bridge scheme reduces the maximum error in
the density by a factor 100 over the predictor-corrector scheme.

5 The Brownian bridge scheme for multi-time step Monte Carlo

This section consists of two parts. First, we show theoretically that the Brownian
bridge scheme converges weakly with order one. Second, we estimate numeri-
cally the convergence behavior of the various schemes of Section 3.

In a financial context, the interest lies in calculating the prices of derivatives,
which are in certain cases expectations of payoff functions. Therefore we are
interested mainly in weak convergence of Monte Carlo simulations. The defini-
tion is recalled here and may be found in, for example, Kloeden and Platen
(1999, Section 9.7).
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DEFINITION 3 (WEAK CONVERGENCE) A scheme {Y ε(τj)} with maximum step size
ε is said to convergence weakly with order β to X if, for each function g with
2(β + 1) polynomially bounded derivatives, there exists a constant C such that,
for sufficiently small ε,

(13)� [g(X(T ))] – � [g(Y ε(T ))] ≤ C · εβ

A criterion that is easier to verify than the above definition is the concept of weak
consistency, and under quite natural conditions it follows that weak consistency
implies weak convergence. The definition of weak consistency is recalled here,
and may be found for example on page 327 of Kloeden and Platen (1999). Here
we develop the remainder of the theory in terms of approximating an autonomous
one-dimensional SDE, say,
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FIGURE 1 Plots of the estimated densities and error in densities of various single time step
discretizations.
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The deal set-up is the same as in Hunter, Jäckel and Joshi (2001a); the three-month forward rate fixing 30 years from
today is set initially to 8% and its volatility to 24%.The legend “BB” denotes Brownian bridge and “BB alternative”
denotes full numerical integration of the expectation term. Note that three densities have been added to the above
figures compared with Figure 1 of Hunter, Jäckel and Joshi (2001a): Milstein and the two Brownian bridge schemes.
On both figures, however, the differences between the analytical and Brownian bridge densities are indiscernible to
the eye.The most notable addition is the Milstein density. Outside of the error graph, the Milstein scheme reaches a
maximum absolute error that is around twice the maximum absolute error for the Euler scheme. The maximum
absolute error in the density for the Brownian bridge and its alternative are 10–3 and 6 × 10–4, respectively. In this
particular test the Brownian bridge scheme thus achieves a reduction by a factor of 100 in the maximum absolute
error over the predictor-corrector scheme, the latter being the second best scheme.



dX(t) = a(X(t))dt + b(X(t))dW(t), X(0) deterministic (14)

However, the theory holds in more general cases too.

DEFINITION 4 (WEAK CONSISTENCY) A scheme {Y ε(τj)} with maximum step size ε
is weakly consistent if there exists a function c = c(ε) with

(15)lim
ε↓0

c(ε) = 0

such that

(16)

and

(17)

Here {F(t)} is the filtration generated by the Brownian motion driving SDE (14).

Kloeden and Platen prove the following theorem (see Theorem 9.7.4 of Kloeden
and Platen (1999)) linking weak consistency to weak convergence.

THEOREM 1 (LINKING WEAK CONSISTENCY TO WEAK CONVERGENCE) Suppose that
a and b of Equation (14) are four times continuously differentiable with poly-
nomial growth and uniformly bounded derivatives. Let {Y ε(τj)} be a weakly
consistent scheme with equitemporal steps ∆τj = ε and initial value Y ε(0) = X(0)
which satisfies the moment bounds

and

(18)

where c(ε) is as in Definition 4. Then Y ε converges weakly to X.
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In the proposition below we show that the Brownian bridge scheme with the
proposed calculation method is weakly consistent. The above theorem then allows
us to deduce that the Brownian bridge scheme converges weakly.

PROPOSITION 2 (BROWNIAN BRIDGE SCHEME IS WEAKLY CONSISTENT) Assume that
the volatility functions σi( · ) are piecewise analytical on the model horizon [0, T].
Then the Brownian bridge scheme defined by Equation (9) and by the four-step
calculation method described in Remark 3 is weakly consistent with the forward
rates process defined in Equation (3).

PROOF Without loss of generality, we may assume that the volatility functions are
analytical. Otherwise, due to the piecewise property of the volatility functions,
we can break up the problem into sub-problems for which each has analytical
volatility functions. Note also that all derivatives of the volatility functions are
bounded because the interval [0, T ] is compact.

We need only verify the consistency Equation (16) for the drift term. To
achieve this, define for i and for all τ ∈[0, T ] and for all L the function
f{i,τ,L} : [0, T – τ] → �:

Due to the assumption that the volatility functions are analytical, it follows that
the function f{i,τ,L} is analytical in t. Taylor’s formula states that there exists an
error term E{i,τ,L}( · ) depending on i, τ and L such that

(19)

with

(20)

Due to the analyticity, boundedness and limiting behavior of the function
h(x) = x ⁄ (1 + x), namely h ↑ 1 (h ↓ 0) as x → ∞ (x → – ∞, respectively), we
have that all its derivatives are bounded. Viewed as a function [0, T ] × [0, T ]
× �N → � ,

(t, τ, L) � f{i,τ,L}(t)

We can thus find a bound on the second derivative, ∂2f{i,τ,L}�∂t2, independent of
(τ,L). Theorem 7.7 of Apostol (1967) then states that the error term of Equation (19)
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may be chosen independently of τ and L. Hence we find that

with E satisfying the second-order Equation (20). Here we have used

If Yε denotes the Brownian bridge scheme, then

Note that the term within braces is exactly drift term i evaluated at (τj, Yε(τj)). It
follows that consistency Equation (16) holds with c(ε) equal to (E(ε) ⁄ ε)2. The
function c( · ) is then quadratic in ε. ��

COROLLARY 1 (BROWNIAN BRIDGE SCHEME CONVERGES WEAKLY WITH ORDER ONE)
Under the assumptions of Proposition 2, the Brownian bridge scheme defined
by Equation (9) and by the four-step calculation method described in Remark 3
converges weakly to the forward rates process defined in Equation (3). It has
order of convergence one.

PROOF We only need verify the claim with regards to the order of convergence.
In the proof of Theorem 1 in Kloeden and Platen (1999), it is shown that the error
term in the weak convergence criterion (13) is less than �

——
c(ε), with c( · ) satisfying

the requirements (15), (16), (17) and (18). All these requirements can be met for
the Brownian bridge scheme with a quadratic function c. Taking the square root
then yields first-order weak convergence for the Brownian bridge scheme. ��

5.1 Numerical results

We now turn to the second part of Section 5, in which the various discretization
schemes are compared numerically. A floating leg and a cap were valued with
10 million simulation paths. This large number of paths was used because the
time discretization bias for the log rates is small compared to the standard error
often observed with 10,000 paths. For example, the Euler one-step-per-accrual
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discretization relative bias for the floating leg and the cap was estimated at 0.02%
and 0.003%, whereas twice the standard error at 10,000 paths is 0.07% and
0.01%, respectively.

To filter out the time discretization bias from the simulation standard error
we reduce the latter by simultaneously simulating the prices under the respective
forward measures. Under the forward measure, there is no drift term and the Euler
log-scheme solves the stochastic differential equation without time discretization
error; in such a way unbiased prices are obtained. The standard error of the
simulated bias is then a measure of its accuracy. Because the correlation between
the discounted payoff under the terminal and the forward measure is high, the
standard error will be lower than the analytical value of the contract.

The results are presented in Figure 2. They show that the predictor-corrector,
Milstein and Brownian bridge schemes have a time discretization bias that is
hardly distinguishable from the standard error of the estimate. The Euler scheme,
however, has a clear time discretization bias for larger time steps. We classify the
schemes from best suited to worst suited (for the particular numerical cases under
consideration) using the criterion of the minimal computational time required to
achieve a bias that is indistinguishable from the standard error at 10,000,000
paths. As Milstein is slightly faster than predictor-corrector, which in turn is
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FIGURE 2 Plots of the estimated biases for a floating leg and a cap for the Euler, predictor-
corrector, Milstein and Brownian bridge schemes.
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A single-factor model was applied.The floating leg is a six-year deal, with the fixings at 1,…, 5 years, and payments of
annual Libor at 2,…, 6 years.The cap is a 1.5-year deal, with the fixings at 0.25, 0.5,…, 1.25 years, and payments of
quarterly Libor above 5% (if at all) at 0.5, 0.75,…, 1.5 years.The market conditions are the same for both deals: all
initial forward rates are 6%, and all volatility is constant at 20%.The net present values of the floating leg and cap are
0.24 and 0.013, respectively, on a notional of one unit of currency.The error bars denote a 95% confidence bound
based on twice the sample standard error.



faster than the Brownian bridge, we obtain: first, Milstein; second, predictor-
corrector; third, Brownian bridge; and fourth, Euler. We stress here that this clas-
sification might be particular to the numerical cases that we considered. We also
stress that the strength of the Brownian bridge lies in single time steps rather than
in multi-time steps.

6 Example: one-factor drift-approximated BGM framework

This section illustrates the framework for fast single time step pricing in BGM by
setting it up in the special case of a one-factor model with a volatility structure as
in the example in Section 3.3. This structure may be written as follows:

σi(t) = γ̃i eκ t

for certain constants γ̃i. The corresponding Markov factor, X, is then defined as
and characterized by

X(t) � N (0, Σ2(t))

where

Prices may now be computed by either numerical integration or finite differences.
In the case of numerical integration, if Π(t, X ) denotes the numeraire-deflated
value of the contingent claim, we have

where t denotes the expiry of the contingent claim and p( · ; µ, Σ2) denotes the
Gaussian density with mean µ and standard deviation Σ. In case of finite differ-
ences, Feynman–Kac yields the following PDE for the price relative to the
terminal bond:

(21)

with use of appropriate boundary conditions. For example, for a Bermudan payer
swaption we have Π( · , –∞) ≡ 0, zero convexity ∂2Π ⁄ ∂X2 ≡ 0 at X = ∞, and
exercise boundary conditions at the exercise times.
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6.1 A simple numerical example

We will evolve five annual (δi = 1) forward rates over a one-year period. Forward
rate i accrues from year i until year i + 1, i = 1,…, 5. Take Li(0) = 7%, γ̃i = 25%
and κ = 15%; then Σ2(1) � 1.166196. Suppose that, after one year, the process X
jumps to 1; thus X(1) = 1. All computations are displayed in Table 1. Column (II)
is determined by Equation (2). To evaluate the effect of the Brownian bridge
scheme over the Euler scheme, the “drift-frozen” forward rates (where the drift
is evaluated at time zero) are displayed in column (V), using the equation
(V) = (I) exp ((II) + (III) + (IV)). Then, we start with computing the Brownian
bridge scheme forward rate 5 and work back to forward rate 1. Forward rate 5 is
easily computed as no drift terms are involved. To compute the drift term integral
at time 1 for forward rate 4, we compute the drift term integral of Equation (9)
for forward rate 5. The result is displayed in column (VI). This we may then use
to compute the Brownian bridge scheme forward rate 4 (see column (VII)),
where we use the equation (VII)i = (I) exp ({∑N

j= i+1(VI)j} + (III) + (IV)).
Continuing, we compute the drift for forward rate 3 using only the Brownian
bridge forward rates 4 and 5. And so on until all forward rates have been com-
puted.

7 Example: Bermudan swaption

As an example of the single time step pricing framework, an analysis is made
for Bermudan swaptions in comparison with a BGM model combined with the
least-squares Monte Carlo method introduced by Longstaff and Schwartz (2001).
The one-factor set-up introduced in the previous section was used with zero
mean-reversion.

Callable Bermudan and European payer swaptions were priced in a one-factor
BGM model for various tenors and non-call periods. The zero rates were taken
to be flat at 5%, and the volatility of the forwards was set flat at 15%. The
Bermudans were priced on a grid, the Europeans through numerical integration.
The PDE was solved using an explicit finite-difference scheme. The explanatory
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TABLE 1 A simple numerical example.

(I) (II) (III) (IV) (V) (VI) (VII)

i Li(0) �i(0) – 1–
2

�̃i
2�2(1) �̃i X(1) Drift Equation Brownian

frozen (9)i –1 – (9)i bridge
Li(1) Li(1)

5 7.00% 0.00000 –0.03644 0.25 8.67% –0.00569 8.67%
4 7.00% –0.00409 –0.03644 0.25 8.63% –0.00567 8.62%
3 7.00% –0.00818 –0.03644 0.25 8.60% –0.00564 8.57%
2 7.00% –0.01227 –0.03644 0.25 8.56% –0.00562 8.53%
1 7.00% –0.01636 –0.03644 0.25 8.53% 8.47%



variable in the least-squares Monte Carlo was taken to be the NPV of the under-
lying swap. This was regressed on to a constant and a linear term. These two basis
functions yield sufficiently accurate results because the value of a Bermudan
swaption increases almost linearly with the value of the underlying swap.

Problems may possibly occur for American-style derivatives in the single time
step framework. Since the framework is not arbitrage-free, spurious early or
delayed exercise may take place to collect the arbitrage opportunity. The effects
of these phenomena have been analyzed by comparing the exercise boundaries3

and risk sensitivities of Longstaff–Schwartz and single time step BGM. In both
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TABLE 2 Specification of the Bermudan swaption comparison deal.

Callable Bermudan swaption
Market data
Zero rates Flat at 5%
Volatility Flat at 15%

Product specification
Tenor Variable (2–8 years)
Non-call period Variable
Call dates Semi-annual
Pay/receive Pay fixed

Fixed leg properties
Frequency Semi-annual
Date roll None
Day count Half year = 0.5
Fixed rate 5.06978% (ATM)

Floating leg properties
Frequency Semi-annual
Date roll None
Day count Half year = 0.5
Margin 0%

Numerics
Simulation paths 10,000
Finite-difference scheme Explicit

Longstaff–Schwartz
Explanatory variable Swap NPV
Basis function type Monomials
No. of basis functions Two (constant and linear)

3 In the Longstaff–Schwartz case, the future discounted cashflows are regressed against the
NPV of the underlying swap with a constant and linear term – say, with coefficients a and b.
So the option is exercised whenever S > a + bS ⇔ S > a�(1 – b) =: S*, where it is assumed
that b < 1, which turns out to hold in practice. Hence the exercise boundary S* may be com-
puted from the regression coefficients by the above formula.



models the exercise rule turned out to be of the following form: exercise when-
ever the NPV of the underlying swap, S, is larger than a certain value S*, which
is then defined to be the exercise boundary.

For a full description of the deal see Table 2. Results have been summarized
in Table 3. Computational times may be found in Table 4. Exercise boundaries
for the 8 year deal are displayed in Figure 3, including confidence bounds on the
Longstaff–Schwartz boundaries.4 We looked at exercise boundaries for other deals
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4 The empirical covariance matrix of the regression-estimated coefficients a and b may be
used to obtain the empirical variance of S*. Denote random errors in a and b by �a and �b,
respectively. If it is assumed that these errors are relatively small, a Taylor expansion yields
(ignoring second-order terms)

We thus obtain the empirical variance of S* (as well as its standard error). Assuming that S* is nor-
mally distributed, a 95% confidence interval is given by plus and minus twice the standard error.

S
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b a b

a b* ≈
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TABLE 3 Results of the Bermudan swaption comparison deal. The notation XNCY
in the first column denotes an X-year underlying swap with a non-call period of Y
years. In the case of a European swaption, it means that the swaption is exercisable
after Y years exactly.All prices and standard errors are in basis points.

Bermudan European
Drift- Longstaff– Standard Drift- Monte Standard

approx. Schwartz error approx. Carlo error
BGM BGM BGM

2NC1 29.40 28.85 0.42 27.36 26.88 0.43

3NC1 64.33 62.78 0.83 53.78 52.92 0.83

4NC1 101.66 101.51 1.29 78.04 78.77 1.24
4NC3 44.09 43.59 0.70 42.93 42.55 0.71

5NC1 141.22 137.95 1.68 100.85 99.31 1.55
5NC3 89.25 86.75 1.34 83.08 80.83 1.36

6NC1 182.16 179.48 2.22 122.27 123.36 1.92
6NC3 134.88 136.43 2.01 120.60 123.06 2.03
6NC5 50.93 50.79 0.86 50.07 50.09 0.87

7NC1 224.40 221.38 2.61 142.93 140.66 2.19
7NC3 181.20 177.11 2.53 156.15 153.71 2.53
7NC5 101.84 100.59 1.64 97.28 96.57 1.65

8NC1 266.63 266.35 3.15 159.38 161.00 2.50
8NC3 226.55 226.94 3.14 185.20 190.98 3.08
8NC5 151.23 151.13 2.38 137.73 140.95 2.41
8NC7 54.20 53.70 0.96 52.38 53.12 0.96
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TABLE 4 Computational times for the Bermudan swaption comparison deal on a
computer with a 700MHz processor.The notation XNCY in the first column denotes
an X-year underlying swap with a non-call period of Y years. In the single time step
framework Bermudans are priced on a grid and Europeans are priced through
numerical integration. All computational times are in seconds.

Bermudan European
Drift- Longstaff Drift- Monte

approximated Schwartz approximated Carlo
BGM BGM BGM

2NC1 0.4 3.0 0.0 1.9

3NC1 0.4 6.6 0.1 3.7

4NC1 0.7 11.1 0.2 6.1
4NC3 0.2 4.5 0.1 3.4

5NC1 1.4 17.3 0.6 9.1
5NC3 0.3 9.0 0.1 6.2

6NC1 2.4 24.5 0.6 12.8
6NC3 0.7 14.6 0.2 9.8
6NC5 0.2 5.8 0.0 4.8

7NC1 4.0 33.1 0.8 16.8
7NC3 1.4 21.2 0.4 13.5
7NC5 0.3 11.4 0.2 8.6 

8NC1 5.6 45.9 1.2 23.9
8NC3 2.2 30.2 0.6 18.8
8NC5 0.6 18.4 0.2 13.5
8NC7 0.1 7.4 0.0 7.8

TABLE 5 BGM pricing simulation re-run for 500,000 paths using pre-computed
exercise boundaries.The standard errors for both prices were virtually the same in
all cases, so only a single standard error is reported. All prices and standard errors
are in basis points.

BGM simulation price
LS pre-computed DA pre-computed Standard error

exercise boundaries exercise boundaries

2NC1 28.63 28.62 0.06
3NC1 62.80 62.77 0.12
4NC1 99.51 99.58 0.18
5NC1 138.38 138.55 0.24
6NC1 178.08 179.41 0.30
7NC1 221.51 222.49 0.36
8NC1 263.05 265.27 0.42



as well and these revealed a similar picture. Risk sensitivities for the various deals
are displayed in Figure 4.

The results show that the single time step BGM pricing framework indeed
prices the Bermudan swaptions close to Longstaff–Schwartz, including correct
estimates of risk sensitivities for shorter-maturity deals. In all cases the price
difference is within twice the standard error of the simulation. Moreover, the
computational time involved is less by a factor 10. Note that the exercise bound-
ary is calculated slightly differently by the Longstaff–Schwartz and drift-approx-
imated (DA) approach. Also, risk sensitivities for longer-maturity deals (seven
to eight years) can be outside of the two-standard-error confidence bound. The
Brownian bridge drift approximation thus becomes worse for longer-maturity
deals, as also explained in Section 8. To determine which approach computed the
best exercise boundaries, the BGM pricing simulation was re-run for 500,000
paths using the pre-computed exercise boundaries. The results, given in Table 5,
show that the drift-approximated exercise boundaries are not worse than their
Longstaff–Schwartz counterparts and are even slightly better.5 Hence there is no
problem with the spurious early exercise opportunities arising from the absence of
no-arbitrage in the fast single time step framework. The non-arbitrage-free issue
is investigated further in the next section. This section ends with the results for a
two-factor model.
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5 This does not necessarily mean that the DA framework outperforms Longstaff–Schwartz
because we only regress on the NPV of the underlying swap. Longstaff–Schwartz may possi-
bly yield better exercise boundaries when it is regressed on to more explanatory variables.

FIGURE 3 Exercise boundaries for the eight-year deal.

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

Exercise point (Y )

Sw
ap

 N
PV

 e
xe

rc
is

e 
le

ve
l (

bp
)

Drift-approximated exercise boundary

Longstaff—Schwartz exercise boundary



7.1 Two-factor model

We consider a two-factor model with the same set-up as above with the exception
of the volatility structure, which we now take to be

Here vi = 15%. For a model with forward expiry structure T1 < … < TN, we
take the vi ∈�2 to be

This instantaneous volatility structure is purely hypothetical. It has the property
that correlation steadily drops between more separated forward rates. To solve the
two-dimensional PDE version of Equation (21) we used the hopscotch method
(see paragraph 48.5 of Wilmott (1998)). Results for the two-factor model are
displayed in Table 6. In a two-factor model (with de-correlation) the exercise
decision no longer depends only on the NPV of the underlying swap but also on
all forward swap rates. We therefore take the results with regression on all forward
swap rates to be the benchmark. Indeed, the drift-approximated prices agree more
with the benchmark than with prices obtained when Longstaff–Schwartz
regresses on the NPV of a single swap. The computational time for the fast drift-
approximated pricing two-dimensional grid was, on average, only a quarter of the
computational time for Monte Carlo.
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FIGURE 4 Risk sensitivities: deltas and vegas with respect to a parallel shift in the zero
rates and caplet volatilities, respectively.
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8 Test of accuracy of drift approximation

Besides the approximation of the drift, the framework (Proposition 1) contains a
timing inconsistency. The inconsistency is best described by an example (see
Figure 5). Suppose that the underlying Markov process X jumps to X(2), say, in
two years. Consider computing the value of the forwards at year 2. We could
jump immediately to year 2 and calculate the forwards there. Alternatively, we
could consider first calculating the forwards at time 1 (under the assumption that
X jumps to some value X(1)) and from this point calculate the forwards at time 2
(assuming that X then jumps to the very same X(2)). In general, the so computed
forwards at time 2 will be different.

In a way, any low-dimensional approximation of BGM will exhibit this timing
inconsistency. Consider the following. Given the value of X(t), we cannot deter-
mine all time-t forward rates. We do, however, know the value of LN(t) because

Fast drift-approximated pricing in the BGM model

Volume 8/Number 1, Fall 2004 www.thejournalofcomputationalfinance.com

117

TABLE 6 Two-factor model comparison. 50,000 paths were used for the Longstaff–
Schwartz simulation. “Swap NPV only” and “All forward rates” indicate that
Longstaff–Schwartz regressed on only the NPV of the swap and on all forward swap
rates, respectively. All prices and standard errors are in basis points.

Fast drift Longstaff–Schwartz
approximation Swap NPV only All forward rates Standard error

(benchmark)

2NC1 25.45 23.27 24.64 0.2
3NC1 59.22 55.79 58.08 0.3
4NC1 94.67 89.54 93.00 0.5
5NC1 132.35 124.79 129.42 0.7
6NC1 171.41 162.89 169.76 0.9
7NC1 212.15 202.97 210.89 1.1
8NC1 252.49 242.59 251.88 1.3
9NC1 292.62 283.89 294.68 1.5

FIGURE 5 Timing inconsistency in the single time step framework for BGM.
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LN has zero drift under the terminal measure N + 1. The value of any other
forward rate Li(t) does not depend solely on the value of X(t) but is dependent on
the whole path that X traversed on the interval [0, t]. The framework for fast
single time step pricing simply calculates the most likely value of Li(t) given the
value of X(t). If we start from a different initial model state (for example, if we
start from the state determined by X(1)), then almost surely our guess for the
most likely value of Li(t) will be different. In this way, it is not really fair to
consider this timing inconsistency, but we will nonetheless investigate it. In the
following, a test will be proposed to evaluate the size of the inconsistency error.

8.1 Test of accuracy of drift approximation based on no-arbitrage

The accuracy test is described by an example. Consider some time T at which
forwards i,…, N have not yet expired. The framework for fast drift-approximated
pricing yields time-T forward rates as a function of X(T ). Under the assumptions
that the model state is determined by the Markov process X, and that the framework
is arbitrage-free, the fundamental arbitrage-free pricing formula will yield values
of forward rates at time t < T as a function of X(t) given by the following formula:6

(22)

where each of the above-stated T random variables should be evaluated at
(T, X(T )). The second equality follows from Bi

AF�BAF
N+1 being a martingale by the

assumption of no arbitrage. The “arbitrage-free” forward rates Li
AF(t, x) obtained

in this way may then be compared with forward rates Li
DA(t, x) obtained by single

time stepping.

8.2 Numerical results for single time step test

The inconsistency test was performed under the following set-up. Ten annual
forward rates were considered where forward rate i accrued from year i to i + 1,
for i = 20,…, 29. Under the notation of the previous section, t was taken to be 10
years, T was taken to be 20 years and TN+1 was taken to be 30 years. See also
Figure 6. Li(0) was taken to be 5%, and mean-reversion, κ, was varied at 0%, 5%
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6 Here the notations “AF” and “DA” indicate “arbitrage-free” and “drift-approximated”,
respectively.



and 10%. The γ̃i were chosen such that the volatility of the corresponding caplet
was equal to some general volatility level v, which was varied at 10%, 15% and
20%. Let SD denote the standard deviation of X(10). X(10) moves were consid-
ered for 0, ±SD ⁄ 2, and ±SD. Results for the volatility/mean-reversion scenario
15%/10% are given in Table 7. The comparison is only reported for L20 because
this forward rate contains the most drift terms, and therefore its corresponding
error is the largest among i = 20,…, 29. Note that the error for L29 is always zero
as it is fully determined by X. In Table 8 the maximum error (over the five
considered X(10) moves) between L20

AF(10) and L20
DA(10) is reported.
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FIGURE 6 Set-up for inconsistency test.
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TABLE 7 Quality of drift approximations: comparison of L20
AF(10) and L20

DA(10) under
different X(10) moves for the volatility/mean-reversion scenario 15%/10%. SD denotes
the standard deviation of X(10). All variables are evaluated at time t = 10.

Brownian bridge Predictor-corrector
X(10) L20

AF L20
DA L20

DA – L20
AF L20

AF L20
DA L20

DA – L20
AF

(%) (%) (bp) (%) (%) (bp)

–SD 3.75 3.81 5.11 3.74 3.81 7.17
–SD ⁄ 2 4.23 4.27 4.03 4.19 4.27 7.94

0 4.77 4.79 2.37 4.70 4.79 8.81
+SD ⁄ 2 5.38 5.38 –0.05 5.28 5.38 9.79
+SD 6.07 6.03 –3.47 5.92 6.03 10.91 

TABLE 8 Quality of drift approximations: maximum of L20
AF(10) – L20

DA(10) over X(10)
moves 0, ±SD ⁄ 2, ±SD, for different volatility/mean-reversion scenarios. SD denotes
the standard deviation of X(10). Differences are denoted in basis points.

Brownian bridge Predictor-corrector
Mean- Volatility level (v) Volatility level (v)
reversion 10% 15% 20% 10% 15% 20%

0% 2.97 9.34 28.73 2.86 8.60 37.45
5% 2.56 8.21 19.46 2.32 12.29 53.85
10% 1.46 5.11 12.56 1.69 10.91 44.59



The test was performed for both the Brownian bridge and predictor-corrector
schemes. The results show that the former outperforms the latter in the timing
inconsistency test.

The inconsistency test results show that, for less volatile market scenarios, the
single time step framework performs very accurately, with errors only up to a few
basis points. For more volatile market scenarios the approximation deteriorates.
But for realistic yield curve and forward volatility scenarios there are no prob-
lems with respect to pricing (see Section 7). The worsening of the approximation
for more volatile scenarios is what may be expected from the nature of the drift
approximations: as the model dimensions increase, the single time step approxi-
mation will break up. By “model dimensions” we mean the volatility level, the
tenor of the deal, the difference between the forward index i and N, or time zero
forward rates, etc. Care should be taken in applying the single time step frame-
work for BGM that the market scenario does not violate the realm where the
single time step approximation is reasonably valid.

9 Conclusions

We have introduced a fast approximate pricing framework as an addition to the
predictor-corrector drift approximation developed by Hunter, Jäckel and Joshi
(2001a). These authors used the drift approximation only to speed up their Monte
Carlo by reducing it to single time step simulation. We have shown that, at a
slight cost, much faster computational methods may be used, such as numerical
integration or finite differences. The additional cost is a non-restrictive assump-
tion, namely, separability of the volatility function. The proposed drift approxi-
mation framework was applied to the pricing of Bermudan swaptions, for which
it yielded very accurate prices with much lower computation times.

Appendix A Mean of generalized geometric Brownian bridge

In this appendix, the time-t mean of the process Lk defined in Equation (9) is
determined. Equivalently, we may determine the time-t mean of the process Y,
given by

(Compare with Equation (9).) The solution of Y (unconditional of time-t*) is
given by

Y t y
X t t
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where

Note that

{ω ∈Ω; Y(t*) = y*} = {ω ∈Ω; X(t*) = log (y*�y0) + 1–
2

Σ2(t*) =: x*}
According to the martingale time change theorem (for example Theorem 4.6 of
Karatzas and Shreve (1991)), we have that X(τ( · )) is a Brownian motion, where
the time change τ is defined by

τ (t) = inf{s ≥ 0; Σ2(t) > s}

Working in the time-changed time coordinates, X( · )X(τ*) = x* is a standard
Brownian bridge, and so, according to Section 5.6.B of Karatzas and Shreve
(1991),

X(τ )X(τ*) = x* � N

Back in the original time coordinates, this translates to

X(t)X(t*) = x* � N

With this, we may evaluate the mean of Y(t)Y(t*) = y* to be

where the following simple rule has been used: �[eZ] = eβ+τ2 ⁄ 2 whenever Z is
normally distributed, Z � N (β, τ2).

Appendix B Approximation of substituting the mean in the
expectation of expression (9)

In Section 3 a four-step method for the calculation of expression (9) is described.
An approximating fourth step is proposed that evaluates the expectation of
the BGM drift inserting the mean. In this appendix an error bound for this
approximation is derived, and it is shown that the approximation is of order two
in volatility in the neighbourhood of zero.
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The expectation term can always be rewritten as

where Z is distributed standard normally. It is straightforward to verify that the
above function f : �2 → � is infinitely differentiable at every point of the whole
real plane. Note that approximating the above expectation at the mean signifies
that the above function is approximated as

Fix µ and calculate the derivative of f with respect to σ. The interchange of dif-
ferentiation and expectation is a subtle argument that may, for example, be found
in Williams (1991, paragraph A.16.1). We carefully verified that in the above case
all the requirements for interchange are satisfied. We then find

Due to the odd nature of the above integrand at the point σ = 0, we find that

Taylor’s formula then states that there exists C ≥ 0 (possibly depending on µ)
such that

Because a bound on the second derivative of σ � f (µ, σ) may be found inde-
pendently of µ on some interval [0, σ– ], it follows from Theorem 7.7 of Apostol
(1967) that the constant C may then be chosen independently of µ for all
σ ∈[0, σ– ].
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