
Swap rate instantaneous volatility is almost deterministic and its deter-
ministic approximate is denoted by σi:j(t) for a swap starting at Ti and end-
ing at Tj + 1.

Three volatility calibrations are considered:
� Time-homogeneous forward rate volatility (THFRV). Here, the pa-
rameters are γj, j = 1, ... , N, denoting the volatility when the index to ma-
turity is j, that is, σi(t) = γj, Ti – j ≤ t < Ti – j + 1. The calibration algorithm is
based on Newton Rhapson. The future cap volatility curve is maintained.
� Time-homogeneous swap rate volatility (THSRV). Here, the swap
rate instantaneous volatility σi:j(t) is assumed time-homogeneous. The cal-
ibration algorithm is a two-stage bootstrap algorithm. The first and second
stages are described in, for example, equation (6.20) and section 7.4, re-
spectively, of Brigo & Mercurio (2001). The future swaption volatility curve
is maintained.
� Constant forward rate volatility (CONST). Here, σi(t) = (const)i. This
implies constant swap rate volatility and distorts future volatility curves.

The forward rate correlation was calibrated by means of a principal
component analysis (Hull & White, 2000).

We considered a 31NC1 co-terminal Bermudan payer’s swaption deal
struck at 5% with annual compounding. The notation xNCy denotes an ‘x
non-call y’ Bermudan option, which is exercisable into a swap with a ma-
turity of x years from today and callable only after y years. The option is
callable annually. The BGM tenor structure is 0 < 1 < 2 < … < 31. All ini-
tial forward rates are taken to equal 5%. The time-zero forward rate in-
stantaneous correlation is assumed given by the form:

The market European-style swaption volatilities are as shown in table A.
The numerical results are shown in figures 1 and 2. 

The vegas are poorly estimated for the THFRV and THSRV cases, where-
as the vega are more accurately estimated by the constant volatility cali-
bration. For the THFRV case, the vegas have been calculated at 1 million
simulation paths (see figure 3). We see that, for a constant volatility cali-

ρ β βij i jT T0 5( ) = − −{ } =exp , %

dW t dW t t
i j

ij
+( ) +( )( ) ( ) = ( )1 1 ρThe Libor BGM interest rate model introduced by Brace, Gatarek & Musiela

(1997) and others is one of the most popular such models among both
academics and practitioners alike. One reason is that it has the poten-

tial of risk managing interest rate derivatives that depend on both the cap and
swaption markets, which would render BGM as a central interest rate model.
It features lognormal Libor rates and almost lognormal swap rates and con-
sequently also the market standard Black formula for caps and swaptions. 

The volatility function allows for future volatility modelling. In this ar-
ticle, however, we show that this introduces a pitfall when calculating swap
vega. The swap vega is the sensitivity of a derivative with respect to the
volatility of an underlying swaption. In combination with certain volatili-
ty functions, BGM may produce poorly estimated swap vega when these
are calculated by re-calibration and with a low number of simulation paths,
say 10,000. We have seen this occur for time-homogeneous forward or
swap rate volatility, but it does not occur for constant volatility. Incorrect
swap vegas leave practitioners unknowingly taking on large uncovered
positions and thus increase the variance of profit and loss. Unstable vegas
lead to large and unnecessary transaction costs when rebalancing the hedg-
ing portfolio based on fluctuations of vega that are not really material.

Re-calibration approach
A common and usually very successful method for calculating a Greek in a
model equipped with a calibration algorithm is to perturb market input, re-
calibrate and then revalue the option. The difference in value divided by the
perturbation size is then an estimate for the Greek. If, however, this tech-
nique is applied to the calculation of swap vega in the Libor BGM model,
then it may yield estimates with large uncertainty, that is, the standard error
of the vega is relatively high. We have observed this phenomenon for time-
homogeneous forward or swap rate volatility, but not for constant volatility.
Evidently, the uncertainty disappears by increasing the number of simulation
paths, but the number required for clarity (that is, an acceptable standard
error) can by far exceed 10,000, which is probably the maximum in a prac-
tical environment. The phenomenon is illustrated in the next section.

Examples of swap vega based on re-calibration 
Take a tenor structure 0 =: T0, T1, ... , TN + 1 with corresponding forward
Libor rates Li for borrowing/lending over the period [Ti, Ti + 1]. Each for-
ward rate is modelled as:

Here, σi denotes forward rate volatility and W(i + 1) denotes a Brownian mo-
tion under the ith forward measure. The correlation structure is modelled by:

dL t

L t
t dW ti

i
i

i( )
( ) = ( ) ( )+( )σ 1
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Swap vega in BGM:
pitfalls and alternatives
Practitioners who are developing the Libor BGM model for risk management of a swap-based
interest rate derivative be warned: for certain volatility functions the estimate of swap vega
may be poor. This may occur for time-homogeneous forward or swap rate volatility, but it does
not occur for constant volatility. Raoul Pietersz and Antoon Pelsser explain and present an
alternative method that estimates vega with clarity at a low number of simulation paths for all
volatility functions

Expiry 1 2 3 … 28 29 30
Tenor 30 29 28 … 3 2 1
Swaption volatility 15.0% 15.2% 15.4% … 20.4% 20.6% 20.8%

A. Swaption volatilities for re-calibration
illustration



bration, the vega is estimated with low uncertainty. The number of simu-
lation paths needed for clarity of vega thus depends heavily on the cho-
sen calibration.

An explanation
The key to the explanation of the poor estimate of vega is the change in
swap rate instantaneous variance. We observed this change and noted that,
for the THFRV and THSRV re-calibration approaches, the instantaneous
variance increment (in the limit) is completely different from a constant
volatility increment (see figure 4).

To understand that the resulting vega is more difficult to estimate for
the THFRV/THSRV case, note that the vega is a multiple of an expectation
of a difference in discounted payouts in a model with either perturbed
volatility or the original volatility:

Here, vegai:N denotes the estimated vega for bucket i, c is the reciprocal
of the perturbation size ∆σi:N, and Pi:N and P denote the discounted pay-
out in the perturbed and original model, respectively. The expectation
under the risk-neutral measure is denoted by E[⋅]. The simulation variance
of the vega is thus given by:

The vega standard error is thus minimised if the covariance between the
discounted payout in either the original and the perturbed model is largest.
This occurs under small perturbations of volatility as implied by the con-
stant volatility regime. In the presence of a perturbation such as the THFRV
re-calibration, however, the stochasticity in the simulation is basically
moved around to other time periods (in our case from period two to one),
but increments over different periods are independent, so the covariance
is decreased. This leads to a larger uncertainty in the vega.

In the following, an alternative method is presented that estimates swap
vega with a low standard error for any volatility function.

Var vega c Var P P c Var P Cov P P Var Pi N i N i N i N: : : : ,[ ] = −[ ] = [ ] − [ ] + [ ]2 2
2{{ }

vega cE P Pi N i N: := −[ ]
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2. Empirical standard errors of the vega for
10,000 simulation paths
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5. Vega calculated with the alternative
approach
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THFRV re-calibration approach

The observed change in swap rate instantaneous variance for the THFRV and
CONST re-calibration approach for the deal set-up referred to in the text. The
concern here is the calculation of swap vega corresponding to bucket 30. To
accomplish this, the price differential has to be calculated in the limit of 30 × 1
swaption implied volatility perturbation ∆σ tending to zero. This implies an
instantaneous variance of 30∆σ2. The total variance increment has to be
distributed over all time periods. Note that for both data sets the sum of the
variance increments equals 100%

4. Observed change in swap rate
instantaneous variance
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The vega is a scaled numerical
derivative and we verified that it is
insensitive to the actual size of the
small volatility perturbation used

1. Re-calibration swap vega results for 10,000
simulation paths
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3. Re-calibration THFRV vega results for 
1 million simulation paths



The corresponding perturbation in the Libor volatility vectors is given by:

With the new Libor volatility vectors, prices can be recalculated in the BGM
model and the vegas calculated. The vegas calculated with the alternative
approach are shown in figure 5. Interestingly, the vegas are now more or
less equal, whereas the prices are not. A possible explanation could be the
imposed identical volatility perturbation.

Conclusions
We showed that care should be taken when calculating swap vega per
bucket in the Libor BGM model by re-calibration, because the perturba-
tion in instantaneous swap rate volatility is hidden and potentially unsta-
ble. However, if the method proposed in this article is applied, it is possible
to obtain correct swap vega per bucket in the BGM model for any volatil-
ity function at a low number of simulation paths. ■
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−1
0 0 0 0:

Swap vega and the swap market model
A swap market model features lognormally distributed swap rates. The im-
plied swaption volatility in terms of instantaneous volatility is given by:

(1)

The swap vega is defined as the sensitivity of the value V of a derivative
with respect to the implied swaption volatility:

As may be seen from equation (1), there are an uncountable number of
perturbations in the swap rate instantaneous volatility to obtain the very
same perturbation in the Black implied swaption volatility. There is, how-
ever, a natural one-dimensional parameterised perturbation, that is, a sim-
ple proportional increment. In equational terms:

(2)

It may be shown that the above perturbation leads to:
� An increase in the implied volatility for the relevant swaption bucket.
� All other swaption volatilities remaining unchanged.
� The swap rate correlation remaining unchanged.

An alternative method
Here, we present and test a simple alternative method for calculating the
vega. This method was developed by Rebonato (2002) in terms of covari-
ance matrices, and independently by Pietersz & Pelsser (2004) in terms of
the volatility vectors.

The method is based on a perturbation in the forward rate volatility to
match a constant swap rate volatility increment. Rebonato (1999) showed
that the swap rate volatility vector is a weighted average of forward rate
volatility vectors:

and that an adequate approximating formula for European-style swaption
prices can be obtained by evaluating the weights at time zero. Though we
have used the latter approximation in our calculations, we mention here
that Jäckel & Rebonato (2003) have developed a more accurate approxi-
mation for the weights, by means of the so-called shape correction. This
more general approximation readily extends as well to the technique pre-
sented hereafter, as mentioned in Rebonato (2002). Write wi:N

j     := wi:N
j    (0)

and establish the convention that σ
_

i(t) = σ
_

i:N (t) = 0, t > Ti, then the volatil-
ity vectors can be jointly related through the matrix equation:

The perturbation in swap rate volatility for the kth bucket prescribed by
equation (2) is:

σ σ ε σ� � L L: : :N N k N

T
t t t( )  → ( )  + ( ) 0 0 0 0

σ σ� �:N t W t( )  = ( ) 

σ σi N j
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∑
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vega
V
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∂
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s ds
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